Materia oscura “stealth”

Quark oscuri tenuti insieme da un’interazione forte a sua volta oscura. Ecco come la dark matter riuscirebbe a eludere a ogni tentativo d’incastrarla. Enrico Rinaldi (LLNL): “Esiste la possibilità che questo mondo oscuro, con le sue nuove particelle, possa essere rivelato dagli esperimenti in corso al Large Hadron Collider al CERN di Ginevra”.


Stealth come furtiva. Stealth come imprendibile. Stealth come quei minacciosi aerei da guerra dal profilo sagomato così da essere invisibili ai radar. Da quanto emerge dai calcoli dei fisici dell’LLNL, il Lawrence Livermore National Laboratory californiano, e dai modelli dati in pasto a Vulcan (un supercomputer per il calcolo parallelo in grado masticare numeri al ritmo dei petaflop), sarebbe questa la natura della materia oscura: stealthy, appunto. Per forza non c’è ancora esperimento che sia riuscito a incastrarla.

Mappa 3D della distribuzione su larga scala della materia oscura ricostruita da misure di lente gravitazionale debole utilizzando il telescopio spaziale Hubble.
Mappa 3D della distribuzione su larga scala della materia oscura ricostruita da misure di lente gravitazionale debole utilizzando il telescopio spaziale Hubble.

Di cos’è dunque fatta, questa materia della cui presenza abbiamo sentore grazie soltanto alla sua attrazione gravitazionale? Secondo la nuova teoria, avrebbe natura composita e confinata. Come un neutrone o un protone, quindi. Solo che a comporla sarebbero dei fermioni dark. Una sorta di “quark oscuri” confinati in nuclei di stealth matter da una forza anch’essa dark e sconosciuta: l’equivalente oscuro dell’interazione forte descritta dalla QCD, la cromodinamica quantistica.

«È davvero singolare che una candidata particella di materia oscura, centinaia di volte più pesante d’un protone, possa essere costituita da componenti elettricamente cariche e, nonostante questo, possa esser riuscita a eludere, fino a oggi, il rilevamento diretto», dice uno dei coautori dell’articolo, Pavlos Vranas, dell’LLNL.

Ma non è sempre stato così. Nell’epoca immediatamente successiva al big bang, per esempio, la temperatura era talmente elevata da presentare le condizioni giuste affinché materia ordinaria e materia stealth riuscissero a interagire senza difficoltà. Condizioni che, sostengono gli autori dello studio, disponendo di acceleratori sufficientemente potenti potrebbero essere ricreate anche oggi. Permettendo così una rilevazione diretta della dark matter. Questo perché, sebbene i nuclei di materia oscura stealth – proprio come i protoni – siano estremamente stabili anche su scale cosmiche, quando si creano (come avveniva nell’universo primordiale) dovrebbero produrre una cascata di altre particelle nucleari a decadimento rapido. Particelle che potrebbero dar luogo a interazioni.

Certo, a voler essere maliziosi, si potrebbe pensare che sia piuttosto comodo spiegare l’oscurità della materia oscura ipotizzando un intero mondo oscuro dove una sorta di “quark oscuri” vengono tenuti assieme da una sorta di “interazione forte” oscura anch’essa, no? Ma il modello della dark matter stealth sviluppato presso il Lawrence Livermore National Laboratory, ora in corso di pubblicazione su Physical Review Letters, non si limita a questo.

«La materia oscura è oscura proprio perché interagisce in maniera quasi impercettibile con la materia visibile. Qualsiasi teoria per la materia oscura deve poter spiegare il fatto che l’interazione attuale con la nostra materia è così minimale, ma allo stesso tempo che le due siano state in interazione all’inizio dell’universo. La nostra teoria, che comunque non consiste in una “copia oscura” della materia visibile (basti il fatto che i “barioni” stabili sono “bosoni”, come per esempio i mesoni della nostra materia, e non “fermioni” come i protoni o i neutroni)», spiega a Media INAF uno dei coautori dello studio, Claudio Rebbi, della Boston University, «soddisfa questi requisiti e offre anche spiragli che potrebbero permetterne la produzione all’LHC, il Large Hadron Collider».

Aspetto fondamentale, quest’ultimo di LHC, rimarcato a Media INAF anche da un altro dei coautori, Enrico Rinaldi, dell’LLNL. «Non sappiamo molto della materia oscura, e i fisici delle particelle devono ipotizzare diversi tipi di modelli e confrontarli quotidianamente con i dati provenienti dagli esperimenti. Nel caso del nostro modello, che non è una copia esatta dell’interazione forte che conosciamo ma ha molti elementi in comune, esiste la possibilità che questo “mondo oscuro”, con le sue nuove particelle, possa essere rivelato dagli esperimenti in corso al Large Hadron Collider al CERN di Ginevra. Non importa quanto sia “comodo” spiegare la materia oscura», conclude dunque Rinaldi, «ma importa avere a disposizione modelli da confrontare direttamente con gli esperimenti: che, in ultima analisi, è quello che la Natura ci dice».

Informazioni su Enrico Corsaro 88 Articoli
Nato a Catania nel 1986. Si laurea in Fisica nel 2009 e ottiene il titolo di dottore di ricerca in Fisica nel 2013, lavorando presso l'Università di Catania e di Sydney, in Australia. Dopo il conseguimento del dottorato ha lavorato come ricercatore astrofisico presso l'Università Cattolica di Leuven, in Belgio, e continua ad oggi la sua carriera nel Centro di Energia Atomica e delle energie alternative di Parigi. Appassionato del cosmo e delle stelle fin dall'età di 7 anni, il suo principale campo di competenze riguarda lo studio e l'analisi delle oscillazioni stellari ed i metodi numerici e le applicazioni della statistica di Bayes. Collabora attivamente con i maggiori esponenti mondiali del campo asterosismologico ed è membro del consorzio asterosismico del satellite NASA Kepler. Nonostante il suo campo di ricerca sia rivolto alla fisica stellare, conserva sempre una grande passione per la cosmologia, tematica a cui ha dedicato le tesi di laurea triennale e specialistica in Fisica e a cui rivolge spesso il suo tempo libero con la lettura e il dibattito di articoli sui nuovi sviluppi del settore.

Ti ricordiamo che per commentare devi essere registrato. Iscriviti al Forum di Astronomia.com ed entra a far parte della nostra community. Ti aspettiamo! : )

Commenta per primo!

Aggiungi un Commento