Descrivere un mondo partendo da un punto luminoso

Le osservazioni interessantissime di Lorenzo Franco e i ricordi dell’inizio della mia vita di planetologo mi hanno stimolato a raccontare vari dettagli sugli studi degli asteroidi, soprattutto legati ai miei filoni di ricerca. Un modo di sentirsi meno vecchio? Forse sì, ma i piccoli pianeti restano giovani, pimpanti e carichi di interesse astrofisico.


Consideriamo due casi estremamente particolari, ma molto indicativi. L’asteroide si trova su un’orbita circolare e complanare con quella terrestre. La direzione del suo asse di rotazione è perpendicolare all’orbita stessa (Fig. 4).

asse perpendicolare all'orbita
Figura 4. Asteroide e Terra rivolvono su orbite complanari e l’asse di rotazione è perpendicolare al piano orbitale.

Le mutue posizioni Terra-asteroide sono mostrate per 4 particolari opposizioni. In realtà, sarebbe stato inutile, in quanto l’angolo tra asse di rotazione e linea di vista rimane sempre uguale a 90° (visione equatoriale). In qualsiasi opposizione si osservi, si ricade nel caso di Fig. 3 (in basso). Otteniamo sempre la stessa ampiezza di curva di luce.

Già dalla prima curva di luce, si ricava subito il rapporto tra gli assi maggiori a/b, ma nessuna informazione sul rapporto a/c o b/c. Sappiamo anche la direzione dell’asse di rotazione (non variando l’ampiezza nelle varie opposizioni l’asse deve essere perpendicolare). Se facciamo un diagramma dove in ascissa mettiamo, ad esempio, la longitudine dell’asteroide e in ordinata l’ampiezza della curva di luce, otteniamo dei punti perfettamente allineati lungo una parallela all’asse delle ascisse.

Altrettanto peculiare, ma più interessante, il caso mostrato nella Fig. 5.

asse giacente sull'orbita
Figura 5. Come la Figura 4, ma l’asse di rotazione giace sul piano orbitale.

In questo caso le orbite sono sempre complanari, ma l’asse di rotazione giace sul piano orbitale (un po’ come Urano). Vi è allora un punto in cui la Terra vede l’asteroide proprio lungo l’asse di rotazione (posizione a destra), ossia l’osservatore non rileva nessuna variazione luminosa durante il periodo di rotazione dell’oggetto celeste (visione polare). Siamo, infatti, nel caso mostrato in alto nella Fig. 3. Per un opposizione che cada a 90° da questa si ha, invece, un angolo tra asse di rotazione e linea di vista uguale a 90° (come in Fig. 3, in basso) e quindi l’ampiezza della curva raggiunge il suo valore massimo (visione equatoriale). Dopo altri 90° ricadiamo nella visione polare (anche se si vede il polo opposto)  e poi ancora nella visione equatoriale.

Nelle configurazioni intermedie tra questi quattro casi peculiari, l’asse di rotazione dell’asteroide forma un angolo variabile tra 0° e 90°, che prende il nome di angolo di aspetto A. In realtà l’angolo andrebbe da 0° a 180° o da – 90° a + 90°, a seconda di come si misuri. Questo fatto ha poca importanza (per adesso, ma ne parleremo più avanti), dato che abbiamo assunto come forma dell’asteroide quella di un ellissoide perfetto, la cui luminosità dipende solo dall’area apparente mostrata all’osservatore.

Al variare dell’angolo di aspetto, l’ampiezza assume valori intermedi tra il valore minimo, uguale a zero (visione polare), e il valore massimo (visione equatoriale). Osservazioni eseguite in varie opposizioni permettono di costruire la curva ampiezza-longitudine. Questa volta non è più una retta parallela all’asse delle ascisse, ma una curva continua che assomiglia, in qualche modo, a una curva di luce. Il valore massimo è sicuramente la visione equatoriale e quindi ci permette di conoscere nuovamente a/b. Inoltre, la posizione in cui l’ampiezza diventa zero, indica proprio la longitudine del polo. In questo caso peculiare, sappiamo anche che la latitudine della direzione dell’asse di rotazione è zero, dato che l’ampiezza minima è nulla e quindi l’asse deve giacere sul piano orbitale dell’asteroide. Calcolando, infine, la differenza di magnitudine tra la visione polare (valore costante durante l’intera rotazione) e quella della visione equatoriale al massimo della curva di luce, si ottiene subito anche il rapporto tra b e c. Si usa la solita formula:

mP – mE = – 2.5 log (A(polare)/Amax(equatoriale)) = – 2.5 log (πab/ πac) = – 2.5 log (b/c)

Il caso è risolto completamente.

Come già detto, però, questa è una situazione del tutto peculiare, molto didattica, ma poco realistica. La situazione “normale” è decisamente più complicata. Ciò che capita è quanto raffigurato in Fig. 6.

inclinazione qualsiasi dell'asse
Figura 6. Come Figura 5, ma questa volta l’asse forma un angolo qualsiasi col piano orbitale.

L’inclinazione del’asse di rotazione sul piano orbitale è diversa da 0° e da 90° (o, se preferite, la latitudine, nel caso di orbita complanare con quella dell’eclittica). Tuttavia, dobbiamo notare due cose importanti.  Anche in questo caso realistico, prima o poi, si avrà un’opposizione con una visione equatoriale (angolo di aspetto A uguale a 90°).

Se questa asserzione vi lascia un po’ dubbiosi, pensate alle stagioni terrestri. Esistono sempre due punti in cui l’asse di rotazione della Terra è perpendicolare al piano dell’eclittica e questi sono gli equinozi. Essi vi sono comunque, indipendentemente da quanto vale l’angolo tra asse ed eclittica. La visione polare è invece impossibile da ottenere e si ha soltanto un valore minimo di ampiezza, in corrispondenza, però, della posizione a 90° dalla visione equatoriale. In altre parole, il minimo della curva ampiezza-longitudine indica, ancora una volta, la longitudine del polo dell’asteroide. Nel caso terrestre questi sono i punti dei solstizi. Alcuni esempi di curve ampiezza-longitudine sono riportate nella Fig. 7.

curve ampiezza-longitudine
Figura 7. Alcune curve ampiezza-longitudine. Qualsiasi asteroide raggiunge sempre il massimo di ampoiezza (visione equatoriale). Il minimo, invece, può essere più alto o più basso, Indica comunque abbastanza bene la longitudine del polo.

Possiamo calcolare, come al solito, il rapporto a/b, sfruttando l’ampiezza misurata nella visione equatoriale (che si ha sempre, ripeto). Resta più problematica la determinazione del rapporto b/ce della latitudine del polo. Ci aiuta la Fig. 8 che riporta la situazione per un’opposizione e per un orientamento qualsiasi dell’asse di rotazione. L’osservatore vede, in realtà, una proiezione dell’asteroide-ellissoide su un piano perpendicolare alla linea di vista. Essa si ottiene, visivamente, come la sezione perpendicolare di un cilindro ellittico che abbia la direzione Terra-asteroide come asse e che sia tangente all’asteroide.

ellissoide nello spazio
Figura 8

L’angolo tra asse del cilindro e asse di rotazione è proprio l’angolo di aspetto A. La proiezione è anch’essa un’ellisse, ovviamente, ma i suoi assi sono, momento per momento, delle funzioni abbastanza semplici che legano angolo di aspetto e rapporti tra i semi-asse dell’asteroide. Particolare rilevanza hanno, ovviamente, quelli relativi al massimo e al minimo della curva di luce. Non intendo sviluppare le formule, in quanto approfittano di un po’ di trigonometria e di qualche passaggio più o meno noioso, ma posso assicurarvi che esiste una soluzione che dona sia la forma che i rapporti tra i tre assi.

Abbiamo fatto qualche ipotesi restrittiva, ma le applicazioni ai casi reali confermano che l’approccio è più che sufficiente per una determinazione abbastanza accurata. I risultati che ho ottenuto per Eros, Kleopatra, Vesta (anche se in modo più elaborato) sono perfettamente in accordo con quanto osservato “in loco” (Eros e Vesta) o attraverso le immagini radar (Kleopatra).

La determinazione dell’asse di rotazione resta, comunque,  un po’ ambigua. In altre parole, esistono quasi sempre due soluzioni altrettanto valide. Questo fatto si può notare nella Fig. 9.

ambiguità dell'asse
Figura 9. Si vedrebbe la stessa superficie apparente per qualsiasi posizione dell’asse lungo il cono con centro nella posizione dell’asteroide e ampiezza uguale all’angolo di aspetto.

Qualsiasi sia la configurazione dell’asteroide nello spazio, la curva di luce non cambia se l’asse di rotazione descrive un cono circolare, di ampiezza uguale all’angolo di aspetto.

Fortunatamente, questa enorme ambiguità si ha solo per una singola opposizione. Se ne abbiamo altre e raffiguriamo, nel piano longitudine-latitudine celeste, le circonferenze che hanno centro nella posizione dell’asteroide e raggio uguale all’angolo di aspetto, esse hanno due soli punti in comune (Fig. 10). La loro longitudine e latitudine sono i possibili valori del polo dell’asteroide. In modo analitico questo fatto si traduce  dicendo che l’angolo di aspetto è calcolato solo in valore assoluto (ossia può essere sia positivo che negativo, come già accennato in precedenza).

Per risolvere l’ambiguità, è necessario che l’orbita non sia complanare con l’eclittica e, magari, che sia anche piuttosto ellittica. In questi casi vi è una piccola differenza tra le due soluzioni: una delle due intersezioni è meno “buona” dell’altra.

l'amibiguità di due poli rimane
Figura 10. Se l’orbita non è inclinata ed è circolare, l’ambiguità tra i due poli non non può essere risolta.

Tuttavia, dato che gli errori sono  molti (macchie di albedo, forma non assimilabile completamente a un ellissoide a tre assi, rugosità superficiale, effetto dell’angolo di fase solare sulla luminosità della superficie esposta all’osservatore (ossia l’ombra su una superficie convessa), ecc.), l’ambiguità è difficilmente risolta e le differenze riscontrate negli errori stimati per le due soluzioni sono comparabili o minori di quelli introdotti da altre cause.

In ogni modo, si ottengono valori più che accettabili per lavori di tipo statistico e anche per pianificare missioni spaziali dirette agli asteroidi, per le quali è necessario avere una stima dell’asse di rotazione e della forma.

Insomma, un giochino che penso sia piaciuto agli amanti della geometria. Gli altri portino pazienza e pensino a quante cose, nel Sistema Solare, si riescono a determinare da un punto di luce, solo perché  è variabile.

//

Ti ricordiamo che per commentare devi essere registrato. Iscriviti al Forum di Astronomia.com ed entra a far parte della nostra community. Ti aspettiamo! : )

2 Commenti    |    Aggiungi un Commento

  1. Caro Enzo, veramente un'ottimo lavoro! MOLTO interessante! Lo farò leggere alla mia piccolina, che non sopporta la geometria perchè non ne capisce l'utilità.....

  2. Ciao Enzo,
    bellissima spiegazione ... non si potrebbe fare di meglio ... semplice e chiara.
    Mi sembra importante citare, come caso d'uso concreto, l'articolo osservativo sull'argomento dello scorso settembre (qui).

    Saluti
    Lorenzo Franco